Почему проект первой советской атомной бомбы не был утвержден
На трехэтажном здании в городе Обнинск Калужской области красуется гордая надпись: «Первая в мире АЭС». Это не преувеличение. Первая в мире атомная электростанция, поставлявшая электроэнергию для городских и промышленных нужд, была открыта именно здесь, в небольшом советском городке, 26 июня 1954 года.
Впрочем, история началась несколько раньше, в 1930-е годы, причем не в СССР, а в США. В те годы ядерная физика только зарождалась и была, можно сказать, «модной». Практически все ведущие американские физики как минимум высказывались по различным связанным с этой темой вопросам, а то и вели серьезные исследования и делали открытия. Наиболее заметной вехой стала работа Джеймса Чедвика, ученика Резерфорда. В 1932 году, исследуя процессы, происходящие при альфа-распаде плутония, Чедвик обнаружил новый вид проникающего излучения и доказал, что оно состоит из ранее неизвестных элементарных частиц — нейтронов. Это был прорыв, позволивший физикам начать эксперименты с нейтронами. С новым излучением работали Фредерик и Ирен Жолио-Кюри, Эрнест Резерфорд, а также Энрико Ферми.
Но в том же 1932 году произошло и еще одно значимое событие: британские физики Джон Кокрофт и Эрнест Уолтон проводили опыты по бомбардировке ядра лития-7 ускоренными протонами и получили необычную реакцию: ядро лития (элемента №3 в Периодической системе) превратилось в две альфа-частицы (то есть в ядра гелия, элемента №2), и при этом выделилось 17,2 МэВ энергии. Само по себе расщепление ядра под действием бомбардирующих частиц было известно раньше: Эрнест Резерфорд наблюдал его еще в 1919 году. Но для опыта с литием впервые использовали ускоритель, и в итоге получились альфа- частицы (Резерфорд получал атомы водорода). По сути, это было начало нового направления в науке. Впоследствии Кокрофт и Уолтон бомбардировали другие ядра разогнанными протонами, альфа-частицами и дейтронами (ядрами дейтерия), получая все новые реакции расщепления, а в 1951 году удостоились Нобелевской премии.
В течение последующих лет множество физиков экспериментировали с бомбардировкой ядер различных элементов субатомными частицами, в том числе недавно открытыми нейтронами. А в 1938 году группа ученых — Отто Ган, Фриц Штрассман и Лиза Мейтнер при участии племянника последней Отто Роберта Фриша — проводила эксперименты по бомбардировке нейтронами ядер урана. Предполагалось, что таким образом можно получить трансурановые элементы, то есть элементы с атомными номерами выше 92 (ученые думали, что уран просто поглотит новые нейтроны). Нептуний, элемент №93, в итоге синтезировали в 1940 году именно таким методом, правда по более сложной технологии. Но до того об открытии 93-го элемента заявляли и Энрико Ферми (аусоний, 1934), и чех Одолен Коблич (богемий, 1934), и румын Хория Холубей (секваний, 1938). До 1944 года уран относился к VI группе и стоял в Периодической таблице под вольфрамом, а трансураны должны были, соответственно, занять места в следующих группах — под рением, осмием, иридием и платиной, то есть в столбцах Периодической таблицы Менделеева с седьмого по десятый. Однако после открытия и изучения химических свойств следующих за ними америция (№95) и кюрия (№96) стало понятно, что и известные в то время трансураны, и уран, и три элемента до него относятся к одному семейству, которое назвали актиноидами и выделили в отдельную строку таблицы.
Группа Отто Гана действительно получала в результате экспериментов новые вещества, но не элементы, а изотопы урана, в частности короткоживущий уран-239 (плюс один нейтрон к исходному изотопу). Чтобы не запутаться: природный уран примерно на 99,3% состоит из изотопа уран-238; число обозначает атомный вес, который, в свою очередь, складывается из 92 протонов и 146 нейтронов. Например, уран-235, которого в природном уране всего 0,7%, имеет на три нейтрона меньше.
Так вот, 17 декабря 1938 года Ган и Штрассман (Мейтнер, будучи еврейкой, в начале того года бежала в Нидерланды) в одном из опытов добились удивительного результата: ядра урана под воздействием бомбардировки нейтронами делились на ядра более легких элементов с выделением энергии. Так была открыта реакция вынужденного деления тяжелых ядер с помощью нейтронов (протоны и альфа-частицы на уран такого воздействия не оказывали).
Реакция вынужденного деления направила ядерную физику по двум дорожкам. С одной стороны, чудовищная энергия, выделяющаяся при делении ядер урана, могла быть использована в мирных целях, а с другой — в целях разрушения. Я не стану подробно рассказывать историю ядерной бомбы — частично она будет затронута в разделе об оружии, к тому же про нее написано немало книг, а к советскому изобретательству она не имеет прямого отношения. Мирное же направление, то есть строительство ядерных источников энергии, нас очень даже интересует.
Предыстория реактора
В 1938 году в Нью-Йорк одновременно прибыли два крупнейших физика-эмигранта — итальянец Энрико Ферми и венгр Лео Силард. Силард уже высказывал мысль о возможности цепной ядерной реакции, а Ферми после открытия Гана и Штрассмана в январе 1939 года предположил, что при делении ядро урана может испускать быстрые нейтроны и если их число будет больше числа поглощенных, то такая реакция станет цепной — нарастающей.
Под руководством Ферми в том же январе 1939 года начались первые эксперименты с целью вызвать цепную ядерную реакцию. Лаборатория располагалась на седьмом этаже Пупин-холла, небоскреба на Манхэттене, построенного в 1927 году специально для отдела физики Колумбийского университета. Эксперименты показали, что цепная реакция возможна, но для ее проведения нужны совершенно новые условия. Помимо того, Ферми и Силард считали, что для создания в будущем ядерного оружия понадобится огромное количество делящихся материалов, которое невозможно получить одиночными реакциями бомбардировки. В природном уране, как было сказано выше, всего 0,7% урана-235, и для его извлечения требуется сложный и дорогой процесс обогащения. А плутоний-239, который в природе вообще не встречается, можно получать с помощью очень интенсивной бомбардировки урана-238 нейтронами, причем только в ядерном реакторе. Так что осуществление цепной реакции в промышленных масштабах имело и «производственный» смысл.
Кстати, почему нужен именно уран-235, а не уран-238? Дело в том, что уран-235, как и другие нечетные изотопы урана (то есть имеющие нечетное количество нейтронов в ядре), хорошо делится при попадании в них нейтронов любых энергий. Наиболее эффективно процесс деления идет при использовании тепловых нейтронов — очень медленных, с крайне низкой, около 0,025 эВ, энергией. Поглотив тепловой нейтрон, ядро урана-235 разваливается на осколки и, в свою очередь, испускает несколько (в среднем около 2,4) нейтронов. Именно такой уран использовался в атомной бомбе «Малыш», сброшенной на Хиросиму. Для Нагасаки применялась другая, плутониевая бомба — все сказанное выше справедливо и для нечетного изотопа плутония, плутония-239. А вот уран-238 — это .четно-четный. изотоп (с четным количеством нейтронов и протонов в ядре), и он делится только быстрыми нейтронами с энергией выше 1 МэВ. Этот процесс по эффективности сильно уступает делению урана-235 под действием тепловых нейтронов, а более медленные нейтроны уран-238 просто поглощает, превращаясь после цепочки реакций в плутоний-239.
Тот факт, что для деления ядер урана-235 лучше всего использовать тепловые нейтроны, поскольку они легко захватываются ядром посредством сильного взаимодействия, Ферми обнаружил, еще работая в Риме. Он создал концепцию замедлителя — специального вещества для снижения скорости быстрых нейтронов. Принцип его действия относительно прост: нейтроны теряют энергию за счет многочисленных соударений с ядрами замедлителя и становятся из быстрых тепловыми.
Цепная реакция в представлении Ферми (крайне упрощенном) выглядела так: медленный (тепловой) нейтрон поглощается ядром урана, делит его с образованием нескольких быстрых нейтронов, они замедляются, поглощаются следующими ядрами и т. д. Соответственно, для мощной цепной реакции нужен был эффективный замедлитель, причем в большом количестве, удовлетворяющий множеству требований. Таким замедлителем стал сверхчистый графит.
Множество ученых — как американцев, так и эмигрантов из Европы — были задействованы в работе по созданию ядерного источника энергии. Так начинался знаменитый Манхэттенский проект, имевший целью создание ядерной бомбы. Во многих источниках написано, что «Чикагская поленница», Chicago Pile-1, первый в истории искусственный ядерный реактор, был непосредственной частью военного проекта, но на этот счет есть разные мнения. Проанализировав ряд источников, я сделал вывод, что исследования, проведенные ядерщиками в ходе создания «Поленницы», легли в основу работ в Лос-Аламосе, но не являлись их официальным началом. Манхэттенский проект официально стартовал уже после запуска Chicago Pile-1.
Во всем этом была замешана и политика. На ядерную программу требовались огромные средства, а правительство не очень торопилось их выделять. В итоге Силард уговорил своего друга Альберта Эйнштейна, мирно жившего в Принстоне, подписать знаменитое письмо Рузвельту, в котором ученые высказывали опасения насчет того, что немцы уже начали разрабатывать ядерное оружие, и настаивали на необходимости аналогичного проекта в США. Изначально предполагалось, что письмо доставит знаменитый пилот Чарльз Линдберг, вхожий к президенту, но в последний момент Силард услышал по радио выступление Линдберга в поддержку политики нацистской Германии (а тот вообще был солидарен с Гитлером по многим вопросам) и решил доверить письмо другому человеку. Так или иначе письмо добралось и действительно подтолкнуло Рузвельта к тому, чтобы начать финансирование американской ядерной программы. В рамках этой программы и был создан первый в истории ядерный реактор.
Чикагская поленница
Реактор для контролируемой цепной ядерной реакции разрабатывали в металлургической лаборатории Чикагского университета с февраля 1942 года. Замечу, что этой лаборатории ранее вообще не существовало — она была создана специально для проекта, и, хотя там проводились определенные работы по металлургии плутония, название «металлургическая» использовалось в основном из соображений секретности. Над реактором работали Ферми, Силард, Герберт Лоуренс Андерсон, Вальтер Цинн, Мартин Уайтекер и Джордж Вейл, а также несколько десятков чернорабочих.
Строительство реактора началось в сентябре 1942 года под трибунами университетского стадиона Стэгг Филд. Замедлителем служили 45 000 графитовых стержней квадратного сечения (10,8 на 10,8 на 42 сантиметра) суммарной массой 360 тонн. Стержни выпиливали на обычном деревообрабатывающем станке в соседнем помещении — рабочие после смены выглядели как шахтеры. В качестве топлива использовались 5,4 тонны природного металлического урана в слитках и 45 тонн прессованного оксида урана — это было обусловлено тем, что металлического урана попросту не хватало, он слишком дорого стоил. Никакой системы охлаждения или защиты от излучения реактор не предусматривал. Название «Чикагская поленница» он получил именно из-за графитовых «поленьев». Замечу, что это была не первая попытка построить реактор — Ферми с командой еще в 1941 году изготовил аж две опытные «поленницы», но обе без какого-либо результата.
Реактор представлял собой большую конструкцию из послойно уложенных графитовых стержней. В них имелись полости, в которых поместили 19 000 брусков оксида урана. Также в конструкции были просверлены отверстия для регулирующих стержней, чтобы с их помощью управлять реакцией: стержни делались из дерева, и на них крепились кадмиевые пластины. Кадмий — отличный поглотитель нейтронов, и стержни, опускаясь на глубину определенного слоя, поглощали часть нейтронов, тормозили реакцию и не позволяли ей переходить в цепную.
2 декабря 1942 года в 9 часов 54 минуты Вальтер Цинн извлек аварийный защитный стержень, и реакция пошла. Постепенно извлекались все новые стержни, и к 15:25 состояние реактора подошло к критическому — цепная реакция началась. Реактор проработал всего 4,5 минуты, с очень низким коэффициентом воспроизводства нейтронов — всего 1,0006, то есть на каждый медленный нейтрон, попавший в ядро урана, приходилось 1,0006 выбитых быстрых нейтронов, но начало было положено. Человек впервые в истории осуществил управляемую цепную ядерную реакцию.
Впоследствии CP-1 запускался еще несколько раз, а в феврале 1943 года его разобрали. Его название дало начало целой серии опытных реакторов, последний из которых, CP-5, был построен в Аргоннской национальной лаборатории в 1954 году и функционировал до 1979-го.
Наверное, вы спросите: а где же советские ученые? Когда уже начнется наша история? Я вам отвечу: прямо сейчас она и начнется.
Советский атом
Как уже говорилось, до войны США были одним из дружественных СССР государств. Сотрудничество началось даже до того, как Соединенные Штаты признали Советский Союз и открыли посольство в Москве (это случилось в 1933 году), и советские ученые в 1920–1930-е годы имели доступ к международной научной информации и даже ездили в рабочие командировки в США и Европу.
Центром изучения ядерной энергии в СССР был Радиевый институт в Ленинграде, созданный в 1922 году по инициативе Владимира Вернадского. Вернадский возглавлял его до 1939-го, причем, что интересно, с 1922-го по 1926-й Вернадский был в творческой командировке в Париже, где работал, в частности, в Институте Кюри. Исследования велись в ленинградском и харьковском физтехах, в Институте химической физики в Москве и т. д., проводились даже Всесоюзные конференции АН СССР по ядерной физике. Ситуация в нашей стране была аналогична общемировой: ученые ставили эксперименты, обменивались результатами и данными. Например, расщепление ядра лития в СССР провели на базе Украинского физико-технического института (в Харькове) в октябре 1932 года — практически одновременно с британцами Кокрофтом и Уолтоном, причем независимо от них. Стоит заметить, что руководитель этого эксперимента Александр Лейпунский был арестован в 1937 году «за шпионаж» и чудом избежал лагерей — его отбило руководство АН СССР. Пятерых сотрудников института расстреляли (эти события получили название «дело УФТИ»).
А в 1940 году сотрудники УФТИ Фридрих Ланге, Владимир Шпинель и Виктор Маслов представили первый советский проект атомной бомбы. В принципе, идея была ровно та же, что и у американцев: в качестве делящегося элемента использовался обогащенный уран-235. Проект представлял собой три заявки на получение авторских свидетельств: «Об использовании урана как взрывчатого и ядовитого вещества», «Способ приготовления урановой смеси, обогащенной ураном с массовым числом 235. Многомерная центрифуга» и «Термоциркуляционная центрифуга». Но с проектом произошел казус: заявку на получение авторского свидетельства не приняли из-за… отсутствия экспериментальных подтверждений! В общем-то история показала, что отказ был к лучшему — неизвестно, что случилось бы, имей СССР ядерную бомбу до начала войны.
Уже после войны Шпинель все-таки сумел получить авторское свидетельство по первой заявке, «Об использовании урана как взрывчатого и ядовитого вещества». Ланге не был одним из авторов данного конкретного проекта, Маслов погиб на фронте, а само свидетельство строго засекретили сразу после выдачи, так что для Шпинеля получение этого документа оказалось лишь делом чести.
Так или иначе в 1941 году практически все работы в области ядерной физики были свернуты по объективным причинам. Многие ученые ушли на фронт, финансирование проектов заморозили, в общем, стране было не до исследований. Поэтому США, где атомный проект развивался в нормальном режиме, ушли далеко вперед и, как описывалось выше, построили и первый ядерный реактор, и первую ядерную бомбу.